ikkuna
0.1.0post2
User Guide
Introduction
Installation
Prerequisites
Installing the library
Reporting Issues
Quickstart
Details
Creating a new Subscriber
Installing the Subscriber
ikkuna
Subpackages
ikkuna.export
Module Contents
Submodules
Subpackages
ikkuna.utils
Module contents
Submodules
ikkuna.visualization
Module contents
ikkuna.models
Module contents
main program
Named Arguments
train
Module Contents
ikkuna
Docs
»
Index
Index
_
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
V
|
W
|
X
|
Y
_
__call__() (ikkuna.export.Exporter method)
__del__() (ikkuna.export.subscriber.Subscriber method)
__getattr__() (ikkuna.export.messages.MessageBundle method)
__getnewargs__() (ikkuna.utils.DatasetMeta method)
(ikkuna.utils.NamedModule method)
__init__() (ikkuna.export.messages.Message method)
(ikkuna.export.messages.MessageBundle method)
(ikkuna.export.messages.MessageBus method)
(ikkuna.export.subscriber.BatchedSVCCASubscriber method)
(ikkuna.export.subscriber.CallbackSubscriber method)
(ikkuna.export.subscriber.PlotSubscriber method)
(ikkuna.export.subscriber.RatioSubscriber method)
(ikkuna.export.subscriber.SpectralNormSubscriber method)
(ikkuna.export.subscriber.Subscriber method)
(ikkuna.export.subscriber.Subscription method)
(ikkuna.export.subscriber.TestAccuracySubscriber method)
(ikkuna.export.subscriber.TrainAccuracySubscriber method)
(ikkuna.models.AlexNetMini method)
(ikkuna.utils.ModuleTree method)
(ikkuna.visualization.Backend method)
(ikkuna.visualization.MPLBackend method)
(train.Trainer method)
__new__() (ikkuna.utils.DatasetMeta static method)
(ikkuna.utils.NamedModule static method)
__repr__() (ikkuna.utils.DatasetMeta method)
(ikkuna.utils.NamedModule method)
_add_module_by_name() (ikkuna.export.Exporter method)
_add_publication() (ikkuna.export.subscriber.Subscriber method)
_asdict() (ikkuna.utils.DatasetMeta method)
(ikkuna.utils.NamedModule method)
_axes (ikkuna.visualization.MPLBackend attribute)
_backend (ikkuna.export.subscriber.PlotSubscriber attribute)
_batch_size (train.Trainer attribute)
_bias_cache (ikkuna.export.Exporter attribute)
_buffer (ikkuna.visualization.MPLBackend attribute)
_buffer_lim (ikkuna.visualization.MPLBackend attribute)
_children (ikkuna.utils.ModuleTree attribute)
_data_loader (ikkuna.export.subscriber.TestAccuracySubscriber attribute)
_dataloader (train.Trainer attribute)
_dataset (train.Trainer attribute)
_dataset_meta (ikkuna.export.subscriber.TestAccuracySubscriber attribute)
_depth (ikkuna.export.Exporter attribute)
_epoch (ikkuna.export.Exporter attribute)
_forward_fn (ikkuna.export.subscriber.TestAccuracySubscriber attribute)
_frequency (ikkuna.export.subscriber.TestAccuracySubscriber attribute)
_global_step (ikkuna.export.Exporter attribute)
_handle_message() (ikkuna.export.subscriber.Subscription method)
(ikkuna.export.subscriber.SynchronizedSubscription method)
_hist_bins (ikkuna.visualization.TBBackend attribute)
_is_training (ikkuna.export.Exporter attribute)
_loss_function (train.Trainer attribute)
_main() (in module main)
_make() (ikkuna.utils.DatasetMeta class method)
(ikkuna.utils.NamedModule class method)
_model (ikkuna.export.Exporter attribute)
_module (ikkuna.utils.ModuleTree attribute)
_module_complete_current() (ikkuna.export.subscriber.BatchedSVCCASubscriber method)
_module_complete_previous() (ikkuna.export.subscriber.BatchedSVCCASubscriber method)
_module_filter (ikkuna.export.Exporter attribute)
_modules (ikkuna.export.Exporter attribute)
_name (ikkuna.utils.ModuleTree attribute)
_new_round() (ikkuna.export.subscriber.SynchronizedSubscription method)
_num_classes (train.Trainer attribute)
_optimizer (train.Trainer attribute)
_plots (ikkuna.visualization.MPLBackend attribute)
_prepare_axis() (ikkuna.visualization.MPLBackend method)
_record_activations_current() (ikkuna.export.subscriber.BatchedSVCCASubscriber method)
_record_activations_previous() (ikkuna.export.subscriber.BatchedSVCCASubscriber method)
_redraw_counter (ikkuna.visualization.MPLBackend attribute)
_reflow_plots() (ikkuna.visualization.MPLBackend method)
_replace() (ikkuna.utils.DatasetMeta method)
(ikkuna.utils.NamedModule method)
_scheduler (train.Trainer attribute)
_shape (train.Trainer attribute)
_subsample (ikkuna.export.subscriber.Subscription attribute)
_subscriber (ikkuna.export.subscriber.Subscription attribute)
_tag (ikkuna.export.subscriber.Subscription attribute)
_train_step (ikkuna.export.Exporter attribute)
_type_counter (ikkuna.utils.ModuleTree attribute)
_weight_cache (ikkuna.export.Exporter attribute)
_writer (ikkuna.visualization.TBBackend attribute)
_xlabel (ikkuna.visualization.MPLBackend attribute)
_ylabel (ikkuna.visualization.MPLBackend attribute)
_ylims (ikkuna.visualization.MPLBackend attribute)
A
add_data() (ikkuna.visualization.Backend method)
(ikkuna.visualization.MPLBackend method)
(ikkuna.visualization.NullBackend method)
(ikkuna.visualization.TBBackend method)
add_histogram() (ikkuna.visualization.Backend method)
(ikkuna.visualization.MPLBackend method)
(ikkuna.visualization.NullBackend method)
(ikkuna.visualization.TBBackend method)
add_message() (ikkuna.export.messages.MessageBundle method)
add_modules() (ikkuna.export.Exporter method)
add_subscriber() (train.Trainer method)
AlexNetMini (class in ikkuna.models)
available_optimizers() (in module ikkuna.utils)
B
Backend (class in ikkuna.visualization)
backend (ikkuna.export.subscriber.PlotSubscriber attribute)
BatchedSVCCASubscriber (class in ikkuna.export.subscriber)
batches_per_epoch (train.Trainer attribute)
C
CallbackSubscriber (class in ikkuna.export.subscriber)
check_message() (ikkuna.export.messages.MessageBundle method)
classifier (ikkuna.models.AlexNetMini attribute)
complete() (ikkuna.export.messages.MessageBundle method)
compute() (ikkuna.export.subscriber.BatchedSVCCASubscriber method)
(ikkuna.export.subscriber.CallbackSubscriber method)
(ikkuna.export.subscriber.HistogramSubscriber method)
(ikkuna.export.subscriber.LossSubscriber method)
(ikkuna.export.subscriber.MeanSubscriber method)
(ikkuna.export.subscriber.MessageMeanSubscriber method)
(ikkuna.export.subscriber.NormSubscriber method)
(ikkuna.export.subscriber.PlotSubscriber method)
(ikkuna.export.subscriber.RatioSubscriber method)
(ikkuna.export.subscriber.SpectralNormSubscriber method)
(ikkuna.export.subscriber.Subscriber method)
(ikkuna.export.subscriber.TestAccuracySubscriber method)
(ikkuna.export.subscriber.TrainAccuracySubscriber method)
(ikkuna.export.subscriber.VarianceSubscriber method)
compute_bin (in module ikkuna.utils.numba)
configure_prefix() (in module ikkuna.visualization)
counter (ikkuna.export.subscriber.Subscription attribute)
,
[1]
create_graph (train.Trainer attribute)
create_optimizer() (in module ikkuna.utils)
current_batch (train.Trainer attribute)
D
data (ikkuna.export.messages.Message attribute)
(ikkuna.export.messages.MessageBundle attribute)
(ikkuna.export.messages.NetworkMessage attribute)
DATA_KINDS (in module ikkuna.export.messages)
dataset (ikkuna.utils.DatasetMeta attribute)
DatasetMeta (class in ikkuna.utils)
DenseNet (class in ikkuna.models)
deregister_data_topic() (ikkuna.export.messages.MessageBus method)
deregister_meta_topic() (ikkuna.export.messages.MessageBus method)
dtype_min_max() (in module ikkuna.utils.numba)
E
epoch (ikkuna.export.messages.Message attribute)
(ikkuna.export.messages.MessageBundle attribute)
epoch_finished() (ikkuna.export.Exporter method)
expected_kinds (ikkuna.export.messages.MessageBundle attribute)
Exporter (class in ikkuna.export)
exporter (train.Trainer attribute)
F
features (ikkuna.models.AlexNetMini attribute)
forward() (ikkuna.models.AlexNetMini method)
(ikkuna.models.DenseNet method)
(ikkuna.models.FullyConnectedModel method)
(ikkuna.models.ResNet method)
(ikkuna.models.VGG method)
freeze_module() (ikkuna.export.Exporter method)
FullyConnectedModel (class in ikkuna.models)
G
get_default_bus() (in module ikkuna.export.messages)
get_parser() (in module main)
global_step (ikkuna.export.messages.Message attribute)
(ikkuna.export.messages.MessageBundle attribute)
H
H_out (ikkuna.models.AlexNetMini attribute)
handle_message() (ikkuna.export.subscriber.Subscription method)
HistogramSubscriber (class in ikkuna.export.subscriber)
I
ikkuna.export (module)
ikkuna.export.messages (module)
ikkuna.export.subscriber (module)
ikkuna.models (module)
ikkuna.utils (module)
ikkuna.utils.numba (module)
ikkuna.visualization (module)
info (ikkuna.visualization.TBBackend attribute)
initialize() (train.Trainer method)
initialize_model() (in module ikkuna.utils)
K
key (ikkuna.export.messages.Message attribute)
(ikkuna.export.messages.MessageBundle attribute)
(ikkuna.export.messages.ModuleMessage attribute)
(ikkuna.export.messages.NetworkMessage attribute)
kind (ikkuna.export.messages.Message attribute)
kinds (ikkuna.export.messages.MessageBundle attribute)
(ikkuna.export.subscriber.Subscriber attribute)
(ikkuna.export.subscriber.Subscription attribute)
,
[1]
L
load_dataset() (in module ikkuna.utils)
loss (train.Trainer attribute)
LossSubscriber (class in ikkuna.export.subscriber)
M
main (module)
main() (in module main)
make_fill_polygons() (in module ikkuna.utils)
MeanSubscriber (class in ikkuna.export.subscriber)
Message (class in ikkuna.export.messages)
message_bus (ikkuna.export.Exporter attribute)
(ikkuna.export.subscriber.Subscriber attribute)
MessageBundle (class in ikkuna.export.messages)
MessageBus (class in ikkuna.export.messages)
MessageMeanSubscriber (class in ikkuna.export.subscriber)
META_KINDS (in module ikkuna.export.messages)
model (train.Trainer attribute)
module (ikkuna.export.messages.ModuleMessage attribute)
(ikkuna.utils.NamedModule attribute)
ModuleMessage (class in ikkuna.export.messages)
modules (ikkuna.export.Exporter attribute)
ModuleTree (class in ikkuna.utils)
MPLBackend (class in ikkuna.visualization)
N
name (ikkuna.export.messages.MessageBus attribute)
(ikkuna.utils.NamedModule attribute)
named_modules (ikkuna.export.Exporter attribute)
NamedModule (class in ikkuna.utils)
NetworkMessage (class in ikkuna.export.messages)
new_activations() (ikkuna.export.Exporter method)
new_input_data() (ikkuna.export.Exporter method)
new_layer_gradients() (ikkuna.export.Exporter method)
new_loss() (ikkuna.export.Exporter method)
new_output_and_labels() (ikkuna.export.Exporter method)
new_parameter_gradients() (ikkuna.export.Exporter method)
NormSubscriber (class in ikkuna.export.subscriber)
NullBackend (class in ikkuna.visualization)
num_classes (ikkuna.utils.DatasetMeta attribute)
numba_gpu_histogram() (in module ikkuna.utils.numba)
O
optimize() (train.Trainer method)
optimizer (train.Trainer attribute)
P
PlotSubscriber (class in ikkuna.export.subscriber)
preorder() (ikkuna.utils.ModuleTree method)
process_messages() (ikkuna.export.subscriber.Subscriber method)
publications (ikkuna.export.subscriber.Subscriber attribute)
publish_module_message() (ikkuna.export.messages.MessageBus method)
publish_network_message() (ikkuna.export.messages.MessageBus method)
R
RatioSubscriber (class in ikkuna.export.subscriber)
receive_message() (ikkuna.export.subscriber.Subscriber method)
register_data_topic() (ikkuna.export.messages.MessageBus method)
register_meta_topic() (ikkuna.export.messages.MessageBus method)
register_subscriber() (ikkuna.export.messages.MessageBus method)
ResNet (class in ikkuna.models)
S
set_loss() (ikkuna.export.Exporter method)
set_model() (ikkuna.export.Exporter method)
(train.Trainer method)
set_schedule() (train.Trainer method)
shape (ikkuna.utils.DatasetMeta attribute)
size (ikkuna.utils.DatasetMeta attribute)
SpectralNormSubscriber (class in ikkuna.export.subscriber)
step() (ikkuna.export.Exporter method)
Subscriber (class in ikkuna.export.subscriber)
Subscription (class in ikkuna.export.subscriber)
subscriptions (ikkuna.export.subscriber.Subscriber attribute)
SVCCASubscriber (class in ikkuna.export.subscriber)
SynchronizedSubscription (class in ikkuna.export.subscriber)
T
tag (ikkuna.export.messages.Message attribute)
TBBackend (class in ikkuna.visualization)
tensor_to_numba() (in module ikkuna.utils.numba)
test() (ikkuna.export.Exporter method)
TestAccuracySubscriber (class in ikkuna.export.subscriber)
title (ikkuna.visualization.Backend attribute)
,
[1]
(ikkuna.visualization.MPLBackend attribute)
title() (ikkuna.visualization.NullBackend method)
train (module)
train() (ikkuna.export.Exporter method)
train_batch() (train.Trainer method)
train_step (ikkuna.export.messages.Message attribute)
(ikkuna.export.messages.MessageBundle attribute)
TrainAccuracySubscriber (class in ikkuna.export.subscriber)
Trainer (class in train)
typestr() (in module ikkuna.utils.numba)
V
VarianceSubscriber (class in ikkuna.export.subscriber)
VGG (class in ikkuna.models)
W
W_out (ikkuna.models.AlexNetMini attribute)
X
xlabel (ikkuna.visualization.MPLBackend attribute)
Y
ylabel (ikkuna.visualization.MPLBackend attribute)